Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Sci ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659235

RESUMO

N6-methyladenosine (m6A) is an RNA modification involved in RNA processing and widely found in transcripts. In cancer cells, m6A is upregulated, contributing to their malignant transformation. In this study, we analyzed gene expression and m6A modification in cancer tissues, ducts, and acinar cells derived from pancreatic cancer patients using MeRIP-seq. We found that dozens of RNAs highly modified by m6A were detected in cancer tissues compared with ducts and acinar cells. Among them, the m6A-activated mRNA TCEAL8 was observed, for the first time, as a potential marker gene in pancreatic cancer. Spatially resolved transcriptomic analysis showed that TCEAL8 was highly expressed in specific cells, and activation of cancer-related signaling pathways was observed relative to TCEAL8-negative cells. Furthermore, among TCEAL8-positive cells, the cells expressing the m6A-modifying enzyme gene METTL3 showed co-activation of Notch and mTOR signaling, also known to be involved in cancer metastasis. Overall, these results suggest that m6A-activated TCEAL8 is a novel marker gene involved in the malignant transformation of pancreatic cancer.

2.
Proc Natl Acad Sci U S A ; 121(12): e2312322121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38478683

RESUMO

RN7SL1 (RNA component of signal recognition particle 7SL1), a component of the signal recognition particle, is a non-coding RNA possessing a small ORF (smORF). However, whether it is translated into peptides is unknown. Here, we generated the RN7SL1-Green Fluorescent Protein (GFP) gene, in which the smORF of RN7SL1 was replaced by GFP, introduced it into 293T cells, and observed cells emitting GFP fluorescence. Furthermore, RNA-seq of GFP-positive cells revealed that they were in an oncogenic state, suggesting that RN7SL1 smORF may be translated under special conditions.


Assuntos
Peptídeos , Partícula de Reconhecimento de Sinal , Partícula de Reconhecimento de Sinal/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Peptídeos/metabolismo
3.
Oncol Lett ; 27(3): 113, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38304169

RESUMO

Pancreatic cancer, one of the most fatal types of human cancers, includes several non-epithelial and stromal components, such as activated fibroblasts, vascular cells, neural cells and immune cells, that are involved in different cancers. Vascular endothelial cell growth factor 165 receptors 1 [neuropilin-1 (NRP-1)] and 2 (NRP-2) play a role in the biological behaviors of pancreatic cancer and may appear as potential therapeutic targets. The NRP family of proteins serve as co-receptors for vascular endothelial growth factor, transforming growth factor ß, hepatocyte growth factor, fibroblast growth factor, semaphorin 3, epidermal growth factor, insulin-like growth factor and platelet-derived growth factor. Investigations of mechanisms that involve the NRP family of proteins may help develop novel approaches for overcoming therapy resistance in pancreatic cancer. The present review aimed to provide an in-depth exploration of the multifaceted roles of the NRP family of proteins in pancreatic cancer, including recent findings from single-cell analysis conducted within the context of pancreatic adenocarcinoma, which revealed the intricate involvement of NRP proteins at the cellular level. Through these efforts, the present study endeavored to further reveal their relationships with different biological processes and their potential as therapeutic targets in various treatment modalities, offering novel perspectives and directions for the treatment of pancreatic cancer.

4.
Biomedicines ; 11(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37626731

RESUMO

Short non-coding RNAs, miRNAs, play roles in the control of cell growth and differentiation in cancer. Reportedly, the introduction of miRNAs could reduce the biologically malignant behavior of cancer cells, suggesting a possible use as therapeutic reagents. Given that the forced expression of several miRNAs, including miR-302, results in the cellular reprograming of human and mouse cells, which is similar to the effects of the transcription factors Oct4, Sox2, Klf4, and c-Myc, this suggests that the selective introduction of several miRNAs will be able to achieve anti-cancer effects at the epigenetic and metabolic levels. In this review article, we bring together the recent advances made in studies of microRNA-based therapeutic approaches to therapy-resistant cancers, especially in gastrointestinal organs.

5.
Cancer Sci ; 114(9): 3487-3495, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37480223

RESUMO

Desmoplastic reaction is a fibrosis reaction that is characterized by a large amount of dense extracellular matrix (ECM) and dense fibrous stroma. Fibrotic stroma around the tumor has several different components, including myofibroblasts, collagen, and other ECM molecules. This stromal reaction is a natural response to the tissue injury process, and fibrosis formation is a key factor in pancreatic cancer development. The fibrotic stroma of pancreatic cancer is associated with tumor progression, metastasis, and poor prognosis. Reportedly, multiple processes are involved in fibrosis, which is largely associated with the upregulation of various cytokines, chemokines, matrix metalloproteinases, and other growth factors that promote tumor growth and metastasis. Fibrosis is also associated with immunosuppressive cell recruitment, such as regulatory T cells (Tregs) with suppressing function to antitumor immunity. Further, dense fibrosis restricts the flow of nutrients and oxygen to the tumor cells, which can contribute to drug resistance. Furthermore, the dense collagen matrix can act as a physical barrier to block the entry of drugs into the tumor, thereby further contributing to drug resistance. Thus, understanding the mechanism of desmoplastic reaction and fibrosis in pancreatic cancer will open an avenue to innovative medicine and improve the prognosis of patients suffering from this disease.


Assuntos
Neoplasias Pancreáticas , Humanos , Pâncreas , Matriz Extracelular , Citocinas , Neoplasias Pancreáticas
6.
Oncol Lett ; 26(2): 336, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37427348

RESUMO

Pancreatic cancer stem cells (CSCs) play a key role in the initiation and progression of pancreatic adenocarcinoma (PDAC). CSCs are responsible for resistance to chemotherapy and radiation, and for cancer metastasis. Recent studies have indicated that RNA methylation, a type of RNA modification, predominantly occurring as m6A methylation, plays an important role in controlling the stemness of cancer cells, therapeutic resistance against chemotherapy and radiation therapy, and their overall relevance to a patient's prognosis. CSCs regulate various behaviors of cancer through cell-cell communication by secreting factors, through their receptors, and through signal transduction. Recent studies have shown that RNA methylation is involved in the biology of the heterogeneity of PDAC. The present review provides an update on the current understanding of RNA modification-based therapeutic targets against deleterious PDAC. Several key pathways and agents that can specifically target CSCs have been identified, thus providing novel insights into the early diagnosis and efficient treatment of PDAC.

7.
Biomolecules ; 12(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36291712

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is caused by genetic mutations in four genes: KRAS proto-oncogene and GTPase (KRAS), tumor protein P53 (TP53), cyclin-dependent kinase inhibitor 2A (CDKN2A), and mothers against decapentaplegic homolog 4 (SMAD4), also called the big 4. The changes in tumors are very complex, making their characterization in the early stages challenging. Therefore, the development of innovative therapeutic approaches is desirable. The key to overcoming PDAC is diagnosing it in the early stages. Therefore, recent studies have investigated the multifaced characteristics of PDAC, which includes cancer cell metabolism, mesenchymal cells including cancer-associated fibroblasts and immune cells, and metagenomics, which extend to characterize various biomolecules including RNAs and volatile organic compounds. Various alterations in the KRAS-dependent as well as KRAS-independent pathways are involved in the refractoriness of PDAC. The optimal combination of these new technologies is expected to help treat intractable pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Compostos Orgânicos Voláteis , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Mutação , DNA/uso terapêutico , Quinases Ciclina-Dependentes/metabolismo , Neoplasias Pancreáticas
8.
Biomedicines ; 10(7)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35885000

RESUMO

Inflammatory bowel disease (IBD) is a chronic inflammatory disorder characterized by damage to the intestinal mucosa, which is caused by a combination of factors. These include genetic and epigenetic alterations, environmental influence, microorganism interactions, and immune conditions. Some populations with IBD show a cancer-prone phenotype. Recent studies have provided insight into the involvement of RNA modifications in the specific pathogenesis of IBD through regulation of RNA biology in epithelial and immune cells. Studies of several RNA modification-targeting reagents have shown preferable outcomes in patients with colitis. Here, we note a new awareness of RNA modification in the targeting of IBD and related diseases, which will contribute to early diagnosis, disease monitoring, and possible control by innovative therapeutic approaches.

9.
Biomedicines ; 10(6)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35740302

RESUMO

MicroRNAs (miRNAs) are synthesized through a canonical pathway and play a role in human diseases, such as cancers and cardiovascular, neurodegenerative, psychiatric, and chronic inflammatory diseases. The development of sequencing technologies has enabled the identification of variations in noncoding miRNAs. These miRNA variants, called isomiRs, are generated through a non-canonical pathway, by several enzymes that alter the length and sequence of miRNAs. The isomiR family is, now, expanding further to include episomiRs, which are miRNAs with different modifications. Since recent findings have shown that isomiRs reflect the cell-specific biological function of miRNAs, knowledge about episomiRs and isomiRs can, possibly, contribute to the optimization of diagnosis and therapeutic technology for precision medicine.

10.
J Chem Phys ; 153(16): 164902, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33138397

RESUMO

During drying of binary colloidal mixtures, one colloidal particle component can segregate to the top surface. We investigate conditions where the segregation occurs through the analysis of a linearized diffusion model with Fick's law generalized for binary colloidal mixtures. The present model is the simplest representation that includes cross-diffusion between different particle components to describe the segregation. Using the analytical solutions of this model, we classify states in terms of which the particle component segregates for the following variables: the mixture ratio of particle components, diffusion coefficients, and drying rates. The obtained state diagrams suggest how to control the segregation by designing material and operation conditions.

11.
Nanotechnology ; 20(47): 475707, 2009 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19875868

RESUMO

Carbon nanotube (CNT) emitters were formed on line-patterned cathodes in microtrenches through a thermal CVD process. Single-walled carbon nanotubes (SWCNTs) self-organized along the trench lines with a submicron inter-CNT spacing. Excellent field emission (FE) properties were obtained: current densities at the anode (J(a)) of 1 microA cm(-2), 10 mA cm(-2) and 100 mA cm(-2) were recorded at gate voltages (V(g)) of 16, 25 and 36 V, respectively. The required voltage difference to gain a 1:10 000 contrast of the anode current was as low as 9 V, indicating that a very low operating voltage is possible for these devices. Not only a large number of emission sites but also the optimal combination of trench structure and emitter morphology are crucial to achieve the full FE potential of thin CNTs with a practical lifetime. The FE properties of 1D arrays of CNT emitters and their optimal design are discussed. Self-organization of thin CNTs is an attractive prospect to tailor preferable emitter designs in FE devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...